

	Home
	Getting Started

	Installation

	Examples

	Testing

	Agents
	Agent

	State
	State

	Transitions

	Transition

	Utils

Train

A library to build and train reinforcement learning agents in OpenAI Gym environments.

[image: Build Status]
 [https://travis-ci.org/marella/train][image: Documentation Status]
 [https://train.readthedocs.io/en/latest/?badge=latest]Read full documentation here [https://train.readthedocs.io/].

Getting Started

An agent has to implement the act() method which takes the current state as input and returns an action:

from train import Agent

class RandomAgent(Agent):

 def act(self, state):
 return self.env.action_space.sample()

Create an environment using OpenAI Gym [https://gym.openai.com/docs/]:

import gym

env = gym.make('CartPole-v0')

Initialize your agent using the environment:

agent = RandomAgent(env=env)

Now you can start training your agent (in this example, the agent acts randomly always and doesn’t learn anything):

scores = agent.train(episodes=100)

You can also visualize how the training progresses but it will slow down the process:

scores = agent.train(episodes=100, render=True)

Once you are done with the training, you can test it:

scores = agent.test(episodes=10)

Alternatively, visualize how it performs:

scores = agent.test(episodes=10, render=True)

To learn more about how to build an agent that learns see agents [https://train.readthedocs.io/en/latest/agents.html] documentation.

See examples [https://github.com/marella/train/tree/master/examples] directory to see implementations of some algorithms (DQN, A3C, PPO etc.) created using TensorFlow, PyTorch and NN [https://github.com/marella/nn] libraries.

Installation

Requirements:

	Python >= 3.6

Install from PyPI (recommended):

pip install train

Alternatively, install from source:

git clone https://github.com/marella/train.git
cd train
pip install -e .

To run examples and tests, install from source.

Other libraries such as Gym [https://gym.openai.com/docs/], TensorFlow [https://www.tensorflow.org/install], PyTorch [https://pytorch.org/get-started] and NN [https://github.com/marella/nn] should be installed separately.

Examples

To run examples, install TensorFlow [https://www.tensorflow.org/install], PyTorch [https://pytorch.org/get-started] and install other dependencies:

pip install -e .[examples]

and run an example in examples [https://github.com/marella/train/tree/master/examples] directory:

cd examples
python PPO.py

Testing

To run tests, install dependencies:

pip install -e .[tests]

and run:

pytest tests

Agents

All agents should extend the base Agent class and implement the act() method:

from train import Agent

class MyAgent(Agent):

 def act(self, state):
 ...

When train() or test() methods are called, an action is selected by calling the act() method and passed to the environment. Then the environment returns a reward and observation. This entire transition (S, A, R, S’) is saved in a Transitions object which can be accessed using self.transitions. When an episode terminates, a new episode is started by resetting the environment and agent.

During training, the following callback methods on agent are called at respective stages:

on_step_begin
on_step_end
on_episode_begin
on_episode_end

These methods combined with the Transitions object in self.transitions can be used to implement various algorithms. on_step_end() can be used to implement online algorithms such as TD(0) and on_episode_end() can be used to implement algorithms such as Monte Carlo methods:

class MyAgent(Agent):

 def on_step_end(self):
 # DQN
 S, A, R, Snext, dones = self.transitions.sample(32) # randomly sample transitions
 ...

 def on_episode_end(self):
 # REINFORCE
 S, A, R, Snext, dones = self.transitions.get() # get all recent transitions
 self.transitions.reset() # reset transitions for next episode
 ...

Note

Transitions are not recorded when running test().

Agent

	
class train.Agent(state=0, transitions=1, **kwargs)

	Base class for all agents.

	Parameters

	
	state (int [https://docs.python.org/3/library/functions.html#int], State) – A number representing the number of recent observations to save in state or a custom State object.

	transitions (int [https://docs.python.org/3/library/functions.html#int], Transitions) – A number representing the number of recent transitions to save in history or a custom Transitions object.

	env – OpenAI Gym like environment object.

	gamma (float [https://docs.python.org/3/library/functions.html#float]) – A custom parameter that can be used as discount factor,

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – A custom parameter that can be used as learning rate ,

	lambd (float [https://docs.python.org/3/library/functions.html#float]) – A custom parameter that can be used by various algorithms such as TD(lambda),

	parameters – List of trainable variables used by agent.

	
act(state)

	Select an action by reading the current state.

	Parameters

	state (array_like) – Current state of agent based on past observations.

	Returns

	An action to take in the environment.

	
run(episodes, env=None, max_steps=-1, max_episode_steps=-1, render=False)

	Run the agent in environment.

	Parameters

	
	episodes (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of episodes to run.

	env – OpenAI Gym like environment object.

	max_steps (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of total steps to run.

	max_episode_steps (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number steps to run in each episode.

	render (bool [https://docs.python.org/3/library/functions.html#bool]) – Visualize interaction of agent in environment.

	Returns

	List of cumulative rewards in each episode.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
test(*args, **kwargs)

	Run the agent in test mode by setting self.training = False.

See: run()

	
train(*args, **kwargs)

	Run the agent in training mode by setting self.training = True.

See: run()

State

State objects can be used to represent the agent’s state. They can be used to save the recent observations seen by agent and process them before passing to the act() method. The following example saves last 2 observations (images) after transforming them (crop, scale etc.) and computes the difference between them which can be useful for tracking motion:

from train import State

class MyState(State):

 def __init__(self, **kwargs):
 super(MyState, self).__init__(length=2, **kwargs)

 def process_observation(self, observation):
 x = observation
 x = x[35:-15, :, :] # crop
 x = np.dot(x, [.299, .587, .114]) # grayscale
 x = x / 255 # scale
 return x

 def process_state(self, state):
 prev, current = state
 diff = current - prev
 return diff.reshape(diff.shape + (1,))

Custom state objects can be passed to agent during initialization:

state = MyState()
agent = MyAgent(state=state, env=env)

State

	
class train.State(length=0, zeros=None)

	Core class to represent agent’s state. Saves recent observations seen by agent.

	Parameters

	
	length (int [https://docs.python.org/3/library/functions.html#int]) – Number of recent observations to save.

	zeros (array_like) – Array of zeros with same shape as each observation that will be used to pad initial states when number of recent observations is smaller than length of state.

	
get(asarray=True, dtype='float32')

	Get the current state.

	Parameters

	
	asarray (bool [https://docs.python.org/3/library/functions.html#bool]) – If True returns an ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

	dtype (dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Data type of the returned value.

	Returns

	Processed state.

	Return type

	(array_like, list [https://docs.python.org/3/library/stdtypes.html#list])

	
process_observation(observation)

	Process observation before saving it.

	Parameters

	observation (array_like) – Observation returned by environment.

	Returns

	Processed observation.

	Return type

	array_like

	
process_state(state)

	Process state before passing it to act().

	Parameters

	state (array_like, list [https://docs.python.org/3/library/stdtypes.html#list]) – List of recent observations.

	Returns

	Processed state.

	Return type

	(array_like, list [https://docs.python.org/3/library/stdtypes.html#list])

	
reset()

	Reset current state.

	
update(observation)

	Update the current state based on new observation.

	Parameters

	observation (array_like) – Observation returned by environment.

Transitions

	
class train.Transitions(maxlen)

	Queue like data structure to save recent transitions observed by agent. Can be used as a replay buffer for algorithms like DQN.

	Parameters

	maxlen (int [https://docs.python.org/3/library/functions.html#int]) – Number of recent transitions to save. When negative, there is no limit on the number of transitions saved.

	
get(**kwargs)

	Get all transitions.

	Returns

	List of transitions or a Transition object containing lists of values.

	Return type

	(list [https://docs.python.org/3/library/stdtypes.html#list], Transition)

	
last()

	Return last transition.

	Returns

	Last transition.

	Return type

	Transition

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – When it is empty.

	
reset()

	Reset transitions.

	
sample(batch_size, **kwargs)

	Randomly sample transitions.

	Parameters

	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of transitions to sample.

	Returns

	List of transitions or a Transition object containing lists of values.

	Return type

	(list [https://docs.python.org/3/library/stdtypes.html#list], Transition)

Transition

	
class train.Transition(state, action, reward, next_state, done)

	

Utils

	
train.utils.check_shape(a, b)

	Check if the shapes of given values match.

	Parameters

	
	a (array_like, tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – An object with shape attribute or a tuple representing shape.

	b (array_like, tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – An object with shape attribute or a tuple representing shape.

	Raises

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When shapes don’t match.

	
train.utils.zeros_like(a, dtype='float32')

	Return an array of zeros with same shape as given array.

	Parameters

	a (array_like, iterable) – An object with shape attribute or an iterable.

	Returns

	Array of zeros with the same shape as a.

	Return type

	(array_like, list [https://docs.python.org/3/library/stdtypes.html#list])

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 train	

 	
 	
 train.agents.base	

 	
 	
 train.state	

 	
 	
 train.utils	

Index

 A
 | C
 | G
 | L
 | P
 | R
 | S
 | T
 | U
 | Z

A

 	
 	act() (train.Agent method)

 	
 	Agent (class in train)

C

 	
 	check_shape() (in module train.utils)

G

 	
 	get() (train.State method)

 	(train.Transitions method)

L

 	
 	last() (train.Transitions method)

P

 	
 	process_observation() (train.State method)

 	
 	process_state() (train.State method)

R

 	
 	reset() (train.State method)

 	(train.Transitions method)

 	
 	run() (train.Agent method)

S

 	
 	sample() (train.Transitions method)

 	
 	State (class in train)

T

 	
 	test() (train.Agent method)

 	train() (train.Agent method)

 	train.agents.base (module)

 	
 	train.state (module)

 	train.utils (module)

 	Transition (class in train)

 	Transitions (class in train)

U

 	
 	update() (train.State method)

Z

 	
 	zeros_like() (in module train.utils)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 <no title>

 		
 Home

 		
 Getting Started

 		
 Installation

 		
 Examples

 		
 Testing

 		
 Agents

 		
 Agent

 		
 State

 		
 State

 		
 Transitions

 		
 Transition

 		
 Utils

_static/up-pressed.png

_static/up.png

